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Abstract 

We study (N* - I)-dimensional left-covariant differential calculi on the quantum group S&(N) 
for which the generators of the quantum Lie algebras annihilate the quantum trace. In this way we 
obtain one distinguished calculus on S&(2) (which corresponds to Woronowicz’ 3D-calculus on 
SU, (2)) and two distinguished calculi on SL, (3) such that the higher-order calculi give the ordinary 
differential calculus on SL(2) and Z(3), respectively, in the limit q -+ 1. Two new differential 
calculi on SL, (3) are introduced and developed in detail. 

Subj. Class.: Quantum groups; Non-commutative geometry 
1991 MSC: 17B37,46L87,81R.50 
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0. Introduction 

After the seminal work of Woronowicz [ 181, bicovariant differential calculi on quantum 
groups (Hopf algebras) have been extensively studied in the literature. There is a well 
developed general theory of such calculi. Bicovariant differential calculi on the quantum 
group SL, (N), N >_ 3, have been recently classified in [ 121. The case of SL, (2) has been 
treated before in [15,11]. All calculi occurring in this classification have dimension N2, i.e. 
their dimension does not coincide with the dimension ( N2 - 1) of the corresponding classical 
Lie group. On the other hand, the first example of a non-commutative differential calculus on 
aquantum group was Woronowicz’ 3D-calculus on SU, (2) [ 171. This is a three-dimensional 
left-covariant calculus which is not bicovariant. The 3D-calculus is algebraically much 
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simpler and in many respects nearer to the classical differential calculus on SU,(2) than 
the four-dimensional bicovariant calculi on SU, (2). This motivates to look for (N2 - l)- 
dimensional left-covariant differential calculi on SL, (N). The purpose of this paper is to 
study the cases N = 2 and N = 3 in detail. The main aim of our approach is to follow the 
classical situation as close as possible. 

Let us briefly explain the basic idea of the approach given in this paper. As in [ 121, we 
assume that the differentials duj of the matrix entries L$ generate the left module of 1 -forms. 

Hence the differential d can be expressed as dx = C(Xij * x)w(uj) for x E SL,(N), 

where w(uj) := c, K(u~) duJ are the left-invariant Maurer-Cartan forms and Xij are 
linear functionals on SL,(N) such that Xij(l) = 0. In our approach for N = 2,3 the 
functionals Xij will be chosen from the quantized universal enveloping algebra u,(slN). 
For the functionals Xij with i # j we take quantum analogues of the corresponding root 
vectors of sly multiplied by some polynomials in the diagonal generators of Uq (slN). We 
assume that the vector space of left-invariant l-forms has dimension (N2 - 1) and that 
Xij(u,‘) = Sir8js for i # j. In case of the ordinary differential calculus on SL(N) we have 
xi wii = 0, so it seems to be natural to suppose that C qP2’wi; = 0 in the quantum case. 
Then all functionals of the corresponding quantum Lie algebra annihilate the quantum trace 
U := C qp2’ uj. Note that Woronowicz’ 3D-calculus on SU, (2) fits into this scheme, see 
Section 2 for details. 

The paper is organized as follows. Section 1 contains some general results about left- 
covariant differential calculi on quantum groups which will be needed later. In particular, 
we describe the construction of the universal higher-order differential calculus associated 
with a given left-covariant first-order calculus on a quantum group. 

In Section 2 we develop four left-covariant differential calculi (f,, d), r = I, 2, 3,4, 
on the quantum group SL,(2) which satisfy the above requirements. All four first-order 
calculi and quantum Lie algebras give the ordinary differential calculus on SL(2) and the 
Lie algebra ~12 when q -+ 1. However, this changes if we look at the associated higher-order 
calculi. For only one of these calculi the higher-order calculus yields the classical calculus 
on SL(2) in the limit q -+ 1. As might be expected, this is Woronowicz’ 3D-calculus on 
SU, (2) or more precisely its analogue for SL, (2). For the other three calculi the 2-form 
w2 A wu is zero and all 3-forms vanish. 

In Sections 3 and 4 we are concerned with left-covariant differential calculi on the quan- 
tum group SL,(3). The functionals X, and Xij with ]i - j] = 1 are defined completely 
similar to the corresponding formulas for the 3D-calculus in Section 2. For the functionals 
X13 andX31 weusetheAnsatzX13 = Xl2X23-~X23Xt2 andX3t = X32X21 -/?X2tX23 
with (Y and /3 complex. For arbitrary complex parameters (II and B, we obtain a first-order 
differential calculus on SL, (3) which fits into the above scheme. It turns out that if (CZ, @) # 
(q-l, q) and (a, /3) # (q, q-l), then the 2-form 0.~31 A 013 vanishes and hence the space 
of 2-forms does not yield the corresponding space for the classical differential calculus on 
SL(3) when q -+ 1. The differential calculi obtained in the two remaining cases (IY, B) = 
(q, q-‘) and (a, fi) = (q-l, q) for the parameters a! and p are studied in Section 4. In 
both cases the higher-order calculi give the ordinary higher-order calculus on SL (3) in the 
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limit q + 1. The corresponding formulas show that these two calculi are very close to the 
classical differential calculi on SL(3) in many respects. 

In Section 5 we generalize the two differential calculi on S&(3) from Section 4 to 
SL, (N). We define two (N2 - l)-dimensional left-covariant first-order differential calculi 
(r,. , d), r = 1, 2, over SL, (N) for which all quantum Lie algebra generators annihilate 
the quantum trace. Both first-order calculi give the ordinary first-order calculus on SL (N) 
when q + 1. If N 2 4, this is no longer true for the higher-order calculi. 

Throughout this paper q is a non-zero complex number such that q2 # 1 and we abbreviate 
h := q - q-’ and h+ := q + q-l. We recall the definition of the quantized universal 
enveloping algebra U,(s1,v), see [4,7]. We shall need it only for N = 2 and N = 3. The 
algebra Uq((sl~) has 4(N - 1)-generators k;, k,:‘, e;, f;, i = 1, . . , N - 1, with defining 
relations: 

k;k;’ = k-‘/c; = 1, k;kj = kjk;, k;e; = qe;k;. k;f; = q-‘fik;, 

e;fj - fje; = 6;jh-‘(kf - ki2), 

k;ej = q-‘i2ejk; and k;fi = q1i2fik; ifli-jl = 1, 

4ej - J.+e;eje; + eief = fj2fj - k+f;fjf; + fjfi' = 0 

if )i _ jl = 1, 

kiej = ejk, kifj = fjk;, e;ej = eje; and fifj = fib if ii _ jl >_ 2, 

The Hopf algebra structure of tr,(sI~) is given by the comultiplication A with A(k;) = 
k;@k;, A(e;) = k;@e;+e;@kLyl, A(f;) = k;@~++;@k,~‘andthecounit&with.s(k;) = 
1, E(e;) = E(f;) = 0. There is a pairing between the Hopf algebras ZJq (SIN) and SL, (N) 
such that (k;, u”,) = 6,, if n # m or n = m # i, i + 1, (k;. u:) = q’i2, (k;, u;:;) = 

4 -“2, (e;, U”,) = S nzSm,i+l and (f;, u”,) = Sn,;+t6m;, where u”, are the matrix entries of 
the fundamental matrix.of SL, (N). 

1. Left-covariant differential calculi on quantum groups 

Our basic reference concerning differential calculi on quantum groups is [ 181. Let A 
be a fixed Hopf algebra with comultiplication A, counit E, antipode K and unit element 1. 
Sometimes we use Sweedler’s notation A ‘“‘(a) = u(l) C3 U(2) 8 . . . c3 U(n+l). For a E A 
weputii :=a -&(u)l. 

A jrst-order differential culculus (FODC) over A is a pair (r, d) of an A-bimodule f 
and a linear mapping d : A -+ f such that d(ub) = du.b + a. db for a, b E A and r = 
Lin (a db: a, b E A} . A FODC (r, d) is called left covuriunt if there is a linear mapping 
AL: f + A @ r for which AL(U db) = A(u)(id @ d)A(b), a, b E A. 

Suppose that (r, d) is a left-covariant FODC over A. Recall that the canonical projec- 
tion of r into r?,, := [w E r: AL(W) = 1 @w] is defined by &(du) = K(u(I)) da(z), 
cf. [18]. We abbreviate w(u) = Pi,(da). Then R := (x E ker E:W(X) = 0) is the right 
ideal of ker E associated with (f, d). The vector space X := {X E A’: X( 1) = 0 and 
X(x) = 0 for x E ‘R} is called the quantum Lie algebra of the FODC (r, d). 
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Lemma 1. A vector space X of linear functionals on A is the quantum Lie algebra of a 
lef-covariant FODC (r, d) if and only if X( 1) = 0 and AX - E @ X E X @ d' for all 
x E x. 

ProoJ: The necessity of the condition AX - E @ X E X @A’ follows at once from formula 
(5.20) in [ 181. To prove the sufficiency part, let us note that the above conditions imply that 
R := (x E ker E: X(x) = 0 for X E X) is a right ideal of ker E. From the general theory 
(cf. Theorem 1.5 in [ 181) we conclude easily that R is the right ideal associated with some 
left-covariant FODC over A. Cl 

The calculus (r, d) is uniquely determined by X (because R is so) and can be described 
as follows. Let (Xi : i E I) be a basis of the vector space X and (xi : i E I} a set of elements 
of A such that Xi(xj) = 6ij. Then, letting Oi = @(xi), we have 

da = C (Xi * a) wi, a E A. 

For notational simplicity we shall write n @ { instead of q @.A C, where r], { E f. We set 
for x E R 

S(X) I= C (XjXj) (X) Wi @ Oj. 
i,j 

Some properties of the mapping s : R + r @A f are collected in the fOllOWing: 

Lemma 2. Let Pin” denote the canonicalprojection of the leji-covariant bimodule I’ 63d r 
into (r @.A r)inv. For x E R and a E A, we have: 

6) S(x>a = ql)S(xq2)); 
(ii) S(xa) = K(a(l)P(x)a(2) = Pi”,(S(x)a). 

Proo_f: We show the first equality of (ii). Recall that AXi = E 63 Xi + Xk @ A!, i E I, by 
formula (5.20) in [ 181, where ff are functionals on A such that oka = (f/ * a)wi, a E A. 
Hence we get 

S(xa) = C(XiXj)(xa) Oi @ wj = C(AXi)(AXj)(x @a) wi @ Wj 

=g 
i,,i 

(XkXI)(x)~~(a(l))f:(a(2)) @i @ wj . 
i,j,k.l 

On the other hand, we have 

@(l))%b(2) = c @(l))(XkXI)(X)Ok 8 m(2) 

=g K(a(l)>(XkXl)(x)fik * (fj *a(2))@ @ wj 

=g 
K(a(l))a(2~fik(a(3))f~(a(4))(XkXl)(x)wi ‘8 wj. 

i, jk.1 
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By the Hopf algebra axioms both expressions are equal. The preceding calculation yields 
a(t)S(xa(2)) = u(~)K(u(~))S(X)U(~) = S(x)u which proves (i). Applying Pin” to (i) and 
using the fact that &(un) = s(u)&(n) we get the second equality of (ii). 0 

A differential culculus over A is a pair (r”, d) of a graded algebra r”’ = @r&rn/\ with 
product A : l’,^ x r,^ += f^,, and a linear mapping d : f A -+ rA of degree one such that 
d2 = 0,d : r,^ --f l-:+1, d(rlr\r)=drlr\~+(-l)“rlr\dCfor17Er~A,rEr~,r~=d 
and r,^ = Lin{udut A...Adu,:u,ul,..., a, E A] for n E N. The definition of left 
covariance of a differential calculus is similar to the case of first-order calculi. Sometimes 
we simply write n< for q A 5‘. 

For each left-covariant FODC (r, dt ) over A there exists a unique (up to isomorphism) 
universal left-covariant differential calculus (r “, d) over A such that rtA = r and d Id = 
dt . We briefly describe the construction of (rA, d). 

Let Q = @,“=+2’ be the universal differential envelope of the algebra A, see e.g. [2] 
or [3]. We have fin0 = A and P’ = A @ (ker E)@‘.” by identifying a @ at @ . . @ a, 
and adat.. . da,. The differential d of fi is given by d(u dut . . . da,) = da dut . da,. 
Clearly, (a, d) is a differential calculus over the Hopf algebra A. Let J(R) := R w (‘R) 52 + 
R dw(R)O be the differential ideal generated by the set w(R). Here R is the right ideal 
of ker E associated with the given FODC (r, dt). We have J(R) = C, J,I((R), where 
&(R) := J(R) f’~ P. Obviously, the quotient algebra a/J(R) = C, firm/J,,(R) 
endowed with the quotient map of d is also differential calculus over A. By formula ( 1.23) in 
[ 181, Jt (R) = dw(R) coincides with the submodule N occurring in Theorem 1.5 of [ 181. 
Therefore, the first-order calculus (fit /.Jj (R), d) of (Q/J(R), d) is isomorphic to (r. dt ). 
Moreover, it is not difficult to verify that (Q/J(R), d) is left covariant. From the preceding 
construction it is clear that (Q/J(R), d) has the following universal property: If (a’, d’) is 
another differential calculus over A such that (ai, d’) is isomorphic to the FODC (r, dt ), 
then (a’, d’) is (isomorphic to) a quotient of (S2/J(R), d) by some differential ideal. 

In order to obtain a more explicit description of the calculus (a/J, d), we shall use a 
construction of the differential envelope 52 = @,, 52” of the Hopf algebra A developed in 
[ 141. More details and proofs of all unproven assertions in the following discussion can be 
found in [14]. 

Let 52O := A. For n E N, we set a” := A @ (ker E)@’ and we write aw(ut) . o(u,) 
instead of a @ at @ . . .@ua,.Weputo(~l+u)=w(u)forhE@,uEkers.Theproduct 
of 0 = @,“=oG’ and the differential d are defined by 

UW(Ul) . . . w(u,)b o(b1). . . w(b,) 

:= Ub(l) o(alb(2)). . ~o(an-z~(n-1)) 4G-l&l)) 4&&l+l)) w(h). . w(brl) 

and 

d(a4al). . .44) := q1p(q2)) oh). . . w&I 

+~(_l)‘aw(al). . .w(Ui-l)w(Ui,(l)>w(ai.(2))w(ai+l). .~(G), 
i=l 
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where al,. . ., a,, bl, . . ., b, E ker E and a, b E A. (In order to motivate these for- 
mulas, we recall that for any left-covariant differential calculus over A we have da = 
u(t)w(u($, dw(a) = --w@(t)) A w@(2)) and o(b)c = c(Ip(bcp)) for a, c E A and 
b E ker E.) It can be shown that the pair (Q, d) endowed with the above definitions be- 
comes a left-covariant differential calculus over A which is (isomorphic to) the differential 
envelope of A. For a E R, the element o(u) of 52 is equal to K(u(~)) da(z) which justi- 
fies to use the notation w(u). Obviously, the kernel of the map w : A + Q is @ . 1. Let 
R, [Xi}, (xi}, {wi} and S be as defined above for the left-covariant FODC (r, dt). We put 

S,(X) := C(XiXj)(X)WiWj for x E R , 
Li 

where the product wiwj is taken in the algebra a. For a E A, the element ii - xi Xi (a)xi 
is annihilated by X and by E, so it belongs to R and hence w(u) - Ci Xi(a)wi E w(R). 
Therefore, since dw(x) = --w(x(~))o(x(~)), we obtain 

dw(x) + S,(X) = - ~(x(t)) - C Xi(x(t))mi 
i 

4X(2)) 

+ CXiCx(l)h C Xj(X(2)bj - W(X(2)) 
i ( j 1 

Eo(R)Q1+Q1w(R) forxER. 

Hence the differential ideal J(R) is generated by the sets o(R) and S,(R). Next we define 
theexterioralgebrafortheFODC (r, dl).Let f@’ := A, rmn := r@d.. .&df (n times) 
for n E N and let I@ := @EoJ’@“” b e th t e ensor algebra of r over A. We denote by 
S = @rE2Sn the two-sided ideal of the algebra r@ generated by the set S(R). The quotient 
algebra rA = T@‘/S is called the exterior algebra over A for the FODC (r, dl). Clearly, 
f A is also a graded algebra r” = @Eorf with foA = A, TrA = r and r,^ = r@‘“/S,, 
for n E N. The product of T” is denoted by A. 

For x E kers, let [xl denote the coset x -I- R. Let n be the product of the mapping 
rrt : f2 -+ f @ defined by rrt(u) = a, nl(uw(ut) . . . ~(a,)) = uw([ul]) . . . ~([a,]) and 
the quotient map from r@ onto r”. Then rr is an algebra homomorphism of Q onto f A. 
It can be shown that the kernel of n is the two-sided ideal in 52 generated by w(R) and 
S,(R). Therefore, by the paragraph before last, ker rr = J(R). Hence the quotient algebra 
Q/J(R) and the exterior algebra r” are isomorphic. We define dn(u) := da for a E l-‘. 
Then (r’, d) is a left-covariant differential calculus over A which is isomorphic to the 
calculus (R/J(R), d). By construction, the first-order calculus (r,A, d) of (rA, d) is the 
given FODC (f, dt). We call (rA’, d) (or likewise (G’/J(R), d) the universal dz@-entiul 
calculus associated with the FODC (r, dt ). 

By definition, S:! = dS(R)d. From Lemma 2 (i), we see that S2 = dS(R) is an d-sub- 
bimodule of r @A r and hence a left-covariant bimodule over A. Therefore, each basis 
(I&> of the vector space S(R) of symmetric elements is a free left module basis for S2, 
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i.e. any element [ of S2 can be written as { = C,, a,& with elements a, E A uniquely 
determined by <. 

2. Left-covariant differential calculi on SL, (2) 

In this section we denote the matrix entries u t, CL:, u :, ui for the quantum group S&(2) 
by a, b, c, d, respectively, and the generators ofUq(S12) by k. k-‘, e, f. Our aim is to study 
left-covariant differential calculi (r, d) on A := SL, (2) of the form 

dx = &Xi *x) Wi> x E S&(2), 
i=O 

(2.1) 

where 00, WI and w2 are left-invariant l-forms and X0, X1 and X2 are linear functionals 
from IA4 (s!(2)) satisfying 

XI(U) = X0(b) = X2(c) = 1, 
Xl(b) = X,(c) = X,(a) = X0(c) = X2(u) = X2(b) = 0: 

(2.2) 

and 

Xi(l)=Xi(q-2u+q-4d)=0 fori=0,1,2. (2.3) 

From the pairing between U, (s/2) and SL, (2) it follows that arbitrary linear functionals 
Xi E &(s1(2)), i = 0, 1,2, satisfying (2.2) and (2.3) can be written as X1 = efpl1 (k) + 

plz(k)+X;, Xo = epo(k)+XbandX2 = fpz(k)+X$,wherepll, ~12, po, p2areLaurent 
polynomials in k and Xi, Xb, X; annihilate all four matrix entries a, b, c, d. This suggests 
to consider the following Ansatz: 

XI = efpl1 (k) + p120V7 Xo = epo(k), 

with polynomials ~11, ~12, po and p2 in k and k-‘. 

X2 = fp2tk) (2.4) 

Theorem 1. There are precisely four non-isomorphic three-dimensional left-covuriunt 
diferentiul calculi (f,, d), r = 1,2, 3,4, satisfying (2.1)-(2.3) obtained by the Ansutz 
(2.4). The right ideal 72, of ker E associated with the culculus (F,, d) is generated by six 
elements 

a +q-2d - (1 +q-2)l, b2, c2, bc, (a - yo,)b, (a - m,.)c, 

where yor and yzr are the coeficients given by y01 = y02 = 1, ~03 = ~104 = q-?. ~21 
= y23 = 1 and ~22 = ~24 = qe2. 

ProojI We first suppose that (r, d) is a differential calculus such that (2.1)-(2.4) are fulfilled. 
Let R be its associated right ideal of ker E. From formulas (2.1)-(2.4) and from the pairing 
between 2.4, (~12) and SL, (2) we compute easily that b2 and c2 are in R and that there are 
complex numbers ~1, yo. y2 such that bc - y1 (a - l), ab - yob and UC - y2c are in R. As 
usual, we shall write x z y if x - y E R. By (2.3), a - 1 G -qe2(d - 1). Thus 
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0 ES (bc - y1 (a - l))(a - 1) = q-‘ubc - bc - y1 (a - 1)’ 

= yoq-‘bc - bc - y1 (a - 1)’ = (yuq-’ - 1)yt (a - 1) - yt (a - 1)’ 

= -Yt(U - l)(u - yuq-21) = y,q-Z(d - l)(u - yuq-21) 

= ~,q-~(du -a - ~uq-‘(d - 1)) = y,q-‘(q-‘bc + 1 - a - yoq-‘(d - 1)) 

= y,q-2(y1q-1(u - 1) + 1 -a + vo(u - 1)) = ytq-2(y,q-1 + yu - l)(u - 1) 

and 

0 3 (bc - y1 (a - 1))b = b2c - ylub + yl b = ye (1 - yo)b . 

Sinceu-I,bandcarenotinRby(2.2),wegety~(y~q~1+yo-1)=Oandy~(l-yo)= 
0, so that yt = 0. This implies that da - 1 = 0 and hence q2(u - l>(u - q-‘) = 

(d - l)(q-’ - a) E -1 + a + q-‘(d - 1) 3 0, so 0 = (a - l)(u - q-‘)b = qubu- 
(1 +qw2)ub+qp2b = (~0 - l)(yu -q-‘)b which yields (~0 - l)(yu -q-‘) = 0. Similarly 
we obtain (~2 - l)(y2 - q-‘) = 0. The two latter equations imply that R contains one 
of the right ideals Rr, r = 1,2, 3,4. From (2.3), wo,ot and wz are linearly independent. 
Hence we have codim R = dim P I”” L 3. Since codim R, 5 3 by the definition of ‘I?!,., we 
conclude that R = R,. 

To complete the proof of Theorem 1, we have to construct the first-order differential 
calculi (f,, d) having the desired properties. For this let A’, denote the linear span of 
functionals Xt , X0, X2 E ZAq (&), where 

x0 := q-‘&k-’ forr = 1,2; X0 := q-5f2ek-5 for r = 3 4. 
X2 :I q’/‘f k-’ forr = 1,3; X2 := q5j2 f kp5 for r = 2: 41 
Xt := qh-‘(E - k-4) for r = 1,2,3,4 . 

From these definitions and from the comultiplication in Z.4, (s/z) we obtain: 

AXj = E @ Xj + Xj @ k-’ forr = 1,2, j =0 and r = 1, j =2, 

AXj = E @ Xj + Xj @ kp6 + (q-’ - 1)X1 @ Xj 

forr=3,4, j=O and r=2,4, j=2, 

AX1 =s@Xl +X1 @kp4 forr = 1,2,3,4. 

This shows that AX - 6 ~3 X E X, @A’ for all X E A’, . Therefore, by Lemma 1, each vector 
space A’, defines a left-covariant first-order differential calculus (r,., d) over SL, (2). Let 
Ri denote the right ideal of ker F associated with the calculus (r,, d). One verifies that the 
functionals Xu, XI, X2 for the calculus (f,, d) have the properties (2.2)-(2.3) and that they 
annihilate the six generators of the right ideal R,. Hence ‘A$ C R,. Since codim RF = 
dim(f, = 3 and codim R, 5 3, we have R: = R,.. This completes the proof of 
Theorem 1. ??

We now describe the structure of the four differential calculi (r, , d), r = 1,2, 3,4, more 
in detail. By the general theory [ 181, the above formulas for the comultiplication of Xj lead 
to the following commutation rules between matrix entries and 1 -forms: 
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Oja = 4-‘tZUj, Ojb = qbmj, WjC = q-‘CWj, wjd = qdoj 

forr=l,2, j=O and r=1,3, j=2, 

Wja = q-3af3j, Ojb = q3bwj, OjC = qe3CWj, Wjd = q3dmj 

forr = 3,4, j =0 and r = 2,4, j = 2, 

cola = qp2awl, OIC = q -2 
CW forr = 1,3, 
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wlb = q2bo,, wld = q2do, forr = 1,2, 

ala =q -2awl + (qp2 - l)bw2, WlC = q -2c0, + (q-2 - l)do2 for r = 2,4, 

wl b = q2bw1 + (q-2 - l)awo, wld = q2dol + (qp2 - 1)cwu for r = 3-4. 

Recall that w(a) = &(da) = K(a(t)) da(z) if A(a) = a(l) @ a(2). From formulas (2.2) 
we compute that for all four calculi 

WI = w(a), wo = w(b), w;! = o(c), 

and 

da = bwo+awl, db = aw:! - q2bwl, 

dc = cwI + dw, dd = -q2dw, + cw2. 

According to the general theory [ 181, the calculus (f,, d) is a *-calculus tor an algebra 
involution x + x* on S&(2) if and only if K(X)* E R, for all x E R,. Obviously, it 
suffices to check this condition for the six generators of the right ideal R,. The four calculi 
(r,, d), r = 1,2,3,4, are *-calculi for the Hopf *-algebra SL, (2, [w), (q) = 1, while only 
(ft, d) and (r4, d) are *-calculi for the real forms SU,(2) and SU,(l, l), q E R, of the 
quantum group SL, (2). However, for the Hopf *-algebras SUq (2) and SU, (1, 1) we have 
K(X)* E 722 for x E R3 and K(X)* E R3 for x E R2, Moreover, we have cp(R2) = R3 and 
cp(‘R3) = R2, where cp denotes the algebra automorphism of S&(2) which fixes a and d 

and interchanges b and c. 
Next we consider the commutation rules between the generators Xu, Xt , X2 of the quan- 

tum Lie algebra X,. of the calculus (r,, d). We have 

q2X1Xo -qs2XoX1 = (1 +q2)Xo forr = 1,2,3,4, 
q2X2X1 -qp2X1X2 = (1 +q2)X2 for r = 1.2,3,4, 
qx2xo - q-IxrJx2 = -q-*x, forr = 1, 
q3X2Xo - qp3XoX2 = -q-‘X1 + qe2hX: for r = 2,3, 
q5X2X0 - qe5X0X2 = -q-‘X1 + 2qT2iX: - qe3h2Xf for r = 4. 

What about the classical limits q -+ 1 of the calculi (J’, , d)? If we keep the basis (~0, WI, 02) 
of ( rr)inv fixed, all above equations make sense in the limit q + 1 and we obtain the classical 
first-order differential calculus on the Lie group SL (2). That is, all four calculi (r,, d), r = 
1,2, 3,4, can be considered as deformations of the classical first-order differential calculus 
on SL(2). In particular, the preceding equations for r = 1, r = 2,3 and r = 4 define 
three deformations of the Lie algebra ~12. Note that the quadratic and cubic terms of X1 
in the two last equations vanish in the limit q + 1. It might be worth mentioning that the 
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quantum Lie algebras X2 and X3 are isomorphic (because the commutation rules of the 
generators X0, Xt , X2 for r = 2 and r = 3 are the same), but the right ideals R2 and 
R3 are different and hence the differential calculi (f2, d) and (f3, d) are not ismorphic. 
Clearly, for the quantum group SU, (2) the differential calculus (rt , d) is nothing but the 
3D-calculus discovered by Woronowicz [ 171, because the right ideal Rt coincides with the 
right ideal of the 3D-calculus, cf. formula (2.27) in [ 171. (The slight differences between 
some of our formulas stated above and the corresponding formulas in [ 171 stem from the 
fact that we assumed X2(c) = 1 by (2.2), while X2(c) = -q by formula (2.3) in [17].) 
Now we turn to the higher-order differential calculi. 

Lemma 3. Ifq12 # 1, then wg 63 012 E S(R,)fir r = 2,3,4. 

Prooj Obviously, a2 - (1 + qv2)a + qp2 1 E R,. Easy computations yield 

Sk2 - (l+q-2)a+q-21) = (l+q-2)(q-201 @ wl+(YnrMr - l)wn @ 02) 

and 

S(a + q-2d - (1 + q-2)1) = (l+q2)wt @ 01 + cf& 8 02 + q-2,2 @ wg 

for r = 2,3,4, so that 

q6w @ w2 + m2 @ w E S(R4), 

(q6 + q4 - 1)~ 8 02+@2 8 WC) E S(R2)nS(Rj). 
(2.5) 

Let r = 2. Then we have ub - b E 722 and S(ub - b) = OIQ @ wI + qp2wl @ 00 . Using 
Lemma 2(ii), we compute 

S((ab - b)c) = Pinv(S(ab - b)c) = Pinv(m ~3 W~C + qp2wl B W~C) 

= Pinv(qe3c@0 C3 WI + q(q-* - l)d@(l 8 02 

+ q-%w, @ 00 + q-3(4-2 - l)do2 @3 wn) 

= (K2 - l)(qwo @ w2 + q-3w @ wo) E S(R2) . (2.6) 

Since q6 # 1, (2.5) and (2.6) imply that ~0 @ w2 E S(R2). Interchanging the role of b and 
c we get wo 03 w2 E S(R3). For r = 4, we have (UC - qe2c)b E 724 and 

S((Qc - q-2c)b) = Pinv((wt @ ~2 + q-4,2 8 wl)b), 

Pinv(q’bWI 8 w f q3(qd2 - l)awo C3 w2 + qbwz 63 01 (2.7) 

+ q-7(q-2 - lbw2 @ 0%) = (q-2 - U(q300 @ 02 + q-‘w2 8 wo) . 

From (2.5) and (2.7) we obtain wg @ w2 E S&t), because we assumed that q l2 # 1. 0 

Therefore, in contrast to the classical case, the 2-form ~0 A w2 is zero for all three 
calculi (r,, d), r = 2, 3,4. In particular, this implies that all 3-forms vanish and that the 
differential of wt is zero. Hence the higher-order calculi of (r,, d), r = 2. 3,4, do not 
give the ordinary differential calculus on SL(2) when q -+ 1. Recall that the calculus 



K. Schmiidgen, A. SctikriJournal of Geometry and Physics 20 (1996) 87-105 91 

(rl, d) is 3D-calculus of Woronowicz [ 171. As shown in [ 171, the higher-order calculus of 
the 3D-calculus yields the ordinary differential calculus on SU(2) (and on SL(2)) in the 
limit q -+ 1. Thus the considerations in this section emphasize the distinguished role of 
Woronowicz’ 3D-calculus on SlJ,(2) resp. of the calculus (r), d) on S&(2) among all 
three-dimensional left-covariant differential calculi on SU, (2) resp. SL, (2). 

Remark. The functionals Xu := q’/*ek, 22 := q-‘/*fk and XI := qk-I(& - k”) also 
satisfy the commutation relations of the quantum Lie algebra XI. This presentation has 
been found by Sudbery [ 161, see e.g. [lo]. The functionals (X0, Xl, x2) define another 
left-covariant FODC (F, d) on SL,(2). Since Xl does not annihilate the quantum trace 
q-*a + qp4d, the right ideal of ker E associated with (F, d) is different from RI, so that 
the first-order calculi (p, d) and (ft , d) are not isomorphic. 

3. Left-covariant differential calculi on SL, (3) 

In this and the following section we consider left-covariant differential calculi (f, d) over 
A = S L, (3) of the form 

(3.1) 

Here Oij and wn are left-invariant l-forms and Xij and X, amlinear functionals of U, (s/3) 
such that 

Xii(l) = 0 and Xij(ui) = 8irSjs for i # j, 

X,(u:) = 0 for r # s and X,,(l) = X,(U) = 0. 

Recall that U := C~z,q-2iui is the quantum trace. We define 

(3.2) 

xi := qk-l(& - t$>, Xi,i+] I= q-“*eik~‘, Xj+l%i := q”*fik,T’, 

fori = 1,2. (3.3) 

Let cz and /? be complex numbers. We set 

Xl3 = X12X23 - aX23X12 and X31 = X32X21 - pX21X32. 

Then all linear functionals Xii and X, satisfy conditions (3.2). Let ,I! denote the vector 
space generated by these functionals. We compute 

AX, = E Q9 X,+X, @ kT4: AXij = E @ Xij + Xij @ k,:’ for Ii - j] = 1, 

AX13 = E C4 X13 + X13 @ (klkd-* + (q - a)X12 8 X23kf2 

+ (1 - aqH23 Qb X,zk;*, 
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and 

AX31 = E ‘8 X31+X31 ‘8 (k,b)-*+(I - &-1)X21 ‘8 X32k,* 

+ (q-l - B)x32 @ X2,5* . 

That is, we have AX - E 8 X E X @ A' for all X E X. Therefore, by Lemma 1, the 
above Ansatz gives a left-covariant differential calculus (f, d) over A = SL, (3). From 
the formulas for AXij and AX, we see that the corresponding homomorphism f of the 
algebra SL, (3) (as defined in Theorem 2.1,3., in [ 181) decomposes into a direct sum of an 
upper triangular part, a lower triangular part and a diagonal part. Using the pairing between 
U, (s/3) and SL, (3) we obtain the following commutation relations between matrix entries 
and 1 -forms: 

wt*u; = q -Q+~j2t4fw12 + 6j3(q - a)t4ol3, 

w34 = 4 -sj2+fi/3u$023 + Sj*(q-l - a)ui&3, 

w,~$. = q-%l+%u~~,3, 

64p; = q -6j1+6j2t4+21 + Sj2(q - p)u&31, 

w32t.l; = q -6j2+6j3ujw32 + hjl (q -l - B)40311 

034 = q -~jI+~j3ui,031 
J 

and w*ll; = q -*~nj+2&t+l,ju~wn . 

In particular, if o = a(q) and fl = B(q) are functions of q such that their limits are equal 
to 1 as q += 1, then the calculus (r, d) gives the ordinary differential calculus on SL(2) in 
the limit q + 1. 

From the general theory [ 181 we know that the right ideal R of ker E associated with 
a FODC plays a crucial role. For the calculus (f, d) defined above the right ideal R is 
generated by the following elements: 

u$j for r # s, r#j,i#j,i#s; 

u:uj -u) fori # j; 

UjUi ii fori#j; u:u;; u;u;; l&4;; u;u;; 

u;u; - (q-l - c&; +; - (4 - /vu:; 

u;u; - ul’ - u; + 1; u;u; + q-*u; - (4-2 + 1)l; 

I.+; - l.4; -q-%4; + q-21; u;u; - (1 + q-$4; +q-21; 

l& - (1 + q-*)u; + (q4 - l)ui - (q4 - 1 - q-*)1; 

u;u; - (1 + q-2)u; + 421; v - &(V)l . 

TO prove this, we first verify by direct computations that the functionals Xii and X, an- 
nihilate all these elements. We omit the (boring) details of these computations. Thus R is 
contained in the right ideal of ker E associated with (r, d). Let & be the eight-dimensional 
vector space spanned by the elements uj for i # j, u ; - 1 and u$ - 1. From the above list of 

generators of R we conclude that each quadratic term u:uj - S,,Gij 1 belongs to & + R. (For 
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two missing terms U~U: and U~U: we get u!& - (q - a)u: E R and z&T - (q-’ - jI)u: E 

R.) Hence we have codim R ( 8. Since dim(r, d) = 8,R is the right ideal of ker E 
associated with the calculus (r, d). Now we turn to the higher-order calculus of (r, d). Our 
first aim is to prove the following: 

Lemma 4. Ifb, B> # (q, 4-l) and (a, p) # (q-l, q), then we have ml3 ~3 w3] E S(R). 

’ Proo& Recall that the elements u2u, , ’ utui and U:U: belong to the right ideal R. We deter- 
mine the corresponding symmetric elements. All functionals XijX,, with i -c j, r -c s or 
i > j, r > s and all functionals X,X,,, X,, X,, X,X, annihilate these elements. We have 

S(44) = ~12(44;)~2’(U;U:)~‘* @ W2’ + x13(&)x31 (44)w13 8 w31 

+ x13(U:U~)x3l(U~U;)w3 @ w31 + X21(44)X12(44)W21 c.a WI2 

= qw2 @ w21 + (q-’ - Bh3 @ w31 + (q - ah3 @ w31 

+ q-*w21 8 012 

= qw2 cia 021 + q-’ 021 8 w12 + (A+ - a - /ml3 8 w31. 

Similarly, we obtain 

‘%+;) = 9023 ‘8 W32 + q-h32 @ wo23 + (A+ - CI - /?)W3] @ W]3 

and 

S(u:u:) = 9013 8 031 + q-IQ+, @ 013. 

Using two of these formulas and the facts that S(xy) = Pin” (S(x) y), x E ‘R, by Lemma 1, 

and f’inv(yV) = E(Y)&(Q) for q E r @A f and y E A, we compute 

S(UiUyUi) = Pi,(S(U~U:)U~) 

= pi,(qwz @ W2’4 +4-l 021 @ wzu: + (h+ - a - B)w13 @ w314) 

= pinv(qUiW’2 8 021 + q(q - @)UiWlZ C9 W21 + q-‘UgO2, C3 WI2 

+ q-l(4 - a&2’ 8 013 + q-‘(4 - a)(q - B)4w3, @a W’3 

+ (h+ - fx - B)q2&43 @ w31) 

=qw2 @Uwzl +q -‘021 8 012 + q&q - cr)(q - B)w31 8 WI3 

+ q2@+ - a - Bh3 @ w31 

= s(U:UT) + (9 - a)(q - B)s(U:U:) + (I - qa)(B - q-‘)w13 8 w31, 

SO that ~‘3 8 013’ E S(R) provided that CY # q-’ and #3 # q-l. Similarly, we get 

S(u;u;u 1) = S(c4$4~) + (q -1 
- 4(q-’ - m(U:U:) 

+ (a - 4)(8 - q)w3 CxJ 031. 

hence 043 63 w3t E S(R) when (Y # q and /I # q. 0 
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Therefore, if (a, fi) # (q-t, 4) and (CY, fi) # (q, q-l), then the 2-form ~13 A ~31 

vanishes in lY*” and hence the space of 2-forms does not give the corresponding space for 
the ordinary differential calculus on SL (3) when q -+ 1. The two remaining distinguished 
cases (cx, /J) = (q-l, q) and (a, /?) = (q, q-l) will be treated in Section 4. For this 
let (Q, d) and (r2, d) denote the first-order differential calculus (f, d) on S&(3) with 
(a, B) = (q-l, q) and ((Y, /Q = (q, q-l), respectively. 

4. The differential calculi (Ii, d) and (f2, d) on SL, (3) 

Let R, be the right ideal of ker E and let A’, be the linear span of linear functionals 
Xij,i # j,i,j = 1,2,3,andX,,n = 1,2,forthecalculus (r,,d),r = 1,2. From 
the definitions of functionals Xi,j, X, and the commutation rules in the algebra Uq (s/3) we 
obtain the following commutation relations for the generators of the quantum Lie algebra A’, . 

Xt and X2: X12X32 - q-‘X32X12 = 0, x23x21 - 4+21x23 = 0, 

x12x21 - q2x2,x12 = Xl, 

x13x31 - q2x3* x13 + &X1X2 = Xl +x2, 

x23x32 - q2x32x23 = x2, x1x2 - x2x1 = 0, 

XI-712 - q-4xl2x1 = (1 + q-2)xJ2, 

XI x21 - q4x21 Xl = -(q2 + q4w21 9 

x2x23 - f4x23x2 = (1 + q-2)x23, 

x2x32 - q4x32x2 = -(q2 + q4) x32, 

XIX23 - q2x23xl = -q2x23, XIX32 - q-2x32xJ = x32, 

XIX13 - q-2xJ3x1 = x13, -71x31 - q2x31x1 = -q2x3,, 

x2x13 - f2xJ3x2 = x13, x2x31 - q2x3Jx2 = -q2x3J, 

x2x12 - q2x12x2 = -q2x12, x2x21 - q-2x2,x2 = x21, 

xl: x13x23 - qx23xl3 = 0, x32x31 - q-‘x3Jx32 = 0, 

x12x13 - 4X13x12 = 0, x31x21 -9 -‘X21 X31 = 0, 

x12x23 - 9+23x12 = x13, x32x21 - 9X21x32 = x31, 

x12x31 - qx3lxl2 = -9x32. 

x13x21 - qx2JxJ3 - hX23XJ = -qx23, 

x13x32 - 4X32x13 = x12, 

x23x31 -4x31x23 +q-‘hX2,X2 = x21. 

x2: x13x23 -&x23x,3 = 0, x32x31 -9x31x32 = 0, 

x12x13 - &x13x12 = 0, x31x21 - qx2Jx3J = 0, 

x12x23 - 9X23x12 = x13, x32x21 - q-Jx2lx32 = x31, 

x12x31 - 4X31x12 -=1X32 = -9x32, 

x13x21 - 9X21x13 = -4x23, 

x13x32 - qx32x13 + q-JhX2XJ2 = x12, 

x23x31 - 4X31x23 = x21. 
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Next we shall describe the corresponding higher-order differential calculi. For this we 
need to know the vector space S(R,). Let I denote the ordered index set { 1,2,2 I,3 1.32, 12, 
13,23}. The right ideal R,., r = 1,2, has 37 generators which have been listed in the pre- 
ceding section (recall that CY = q-’ , B = q for Rt and (Y = q, p = q-’ for R2). Let f3, 
be the linear span of these generators. Using the formulas for the comultiplications of X;j 
and X, and for the pairing between U, (s/g) and SL, (3) one can compute the symmetric 
elements S(x) for the generators of R,. We state only the result of these (long) compu- 
tations. The following 36 elements of P @a f belong to S(R,) and form a basis of the 
vector space s(f3,). 

S(Rt ) and S(R2): Wj@Wj fori#j,i,j=1,2,3; wn@on forn=l,2: 
wl2 @ 032 + qw32 8 w,2, w23 8 w2l + qw2, @ 023, 

w12 @ W2l + q-2w2, @ 012. w13 @ w3, + q-2,3, @ (j),3? 

023 @ 032 -k qe2w32 8 w23, 

WI @ w2 + w2 @ w, - q-h3 @ w3,. 
-4 

WI @w,2+q4w,2@w,. 0, @I’21 fq 02, @WI, 

w2@w23fq4w23@w2, w2@JP32+q-4w32@w2, 

WI ‘8 w23 + qd2w23 @ wl, w, @ w32 + q2032 @ ml, 

wl@w13+q2w13@w,, w,c9w3,+q 
-2 w3,@w,, 

w2 8 013 + q2w,3 @ w2, w2 c9 w31 + q -2 w3, @ w2, 

w2 @ WI2 + q-2w12 @ w2, 02 @ W2] $ q2w2, @ 02, 

S(R1): w13 ‘8 023 + q-‘w23 @ w13, w32 @, w31 + qwj, @ w32, 

WI2 8 w13 + q-‘013 @ Wl2. w31 @I 02, + qw2, @ wg,, 

w12@w23+qw23@w,2, w32@w21 +q 
-I 

w21 8 w32, 

WI2 @ w31 + q-‘Wj, @ 012, 

w23 @ WI + q2wl @ W23 + kw,3 @ ~21, 

WI3 69 032 + q-‘w32 c!Q w13. 

w2 @ w21 + q2w21 @ w2 + AW3, @ w23. 

S(R2): w13 ‘8 023 •k qW23 ‘8 013, ~32 @ w31 + q -‘w31 @ w32. 

WI2 CQ 013 + qw,3 c3 w,2, w3, @I w2, + q -1 
w21 @w31, 

wl2 8 w23 + q-l023 8 012, ~32 ~8 02, f qw2, @ wj2, 

WI @ 032 + q2w32 @ 0, + hW,2 @ ~31, 

WI3 @ WI2 + q-lw2, @ w21, 

w12 @ w2 + q2w2 8 012 + kW32 @ wl3, 

w23 @ w31 + q 
-I 

w31 ‘8 023. 

The preceding formulas showed that both FODC (rt , d) and (r2, d) are very close to 
the classical differential calculus on SL(3). For instance, except for two cases (that is, 
wt2t.4, ~32~; for r = 1 and W23~;, w2lu’; for r = 2), each l-form wiu”, is equal to U”,wi 
multiplied by some power of q. Except for three cases, the commutation relations of the 
quantum Lie algebra A’, and the elements of the left module basis of S2 contain only two 
quadratic terms as in the classical case. 
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Lemma 5. For r = 1,2, we have S(&) = S(R,). 

Prooj By Lemma 2 (ii), it suffices to show that Pi,(Cuj) E S(B,.) for i, j = 1,2,3 and for 

all 36 basis elements < of listed above. This is obviously fulfilled if {$ is a scalar multiple of 

I.${, since Pinv(u[) = &(u)Pinv({) by Lemma 2.2 in [18]. From the commutation relations 
between matrix entries and l-forms we conclude that it remains to check the condition 
Pinv([uj) E S(&) for all basis elements < of S(&) which are sums of three terms or 
contain the l-forms 012 or ~32 in case r = 1 resp. ~23 or 091 in case r = 2. These are 
14 elements { in either case r = 1 and r = 2. We carry out this verification for the two 
elements Cl := 012 @ ~32 + 4032 @ 012 and 5‘2 := WI @ ~102 + w2 ~3 01 - q-*Aw13 @ ~31 
in case r = 1. From 0112 @ ~32~~ - 3 - quiwl2 @ ~32 + qku$13 @ ~32 and 032 @ 012~4; = 
qu+32 69 012 + q-’ h&.132 8 013 it follows that Pi,(<lui) = q[l and Piny({lu:) = 
qh(o13 @ W32 + q-‘o32 @ ~013) E S(&). Moreover, []uj is a multiple of uj<t for all 

elements nj other than ~33 and ~32. For (2 we obtain (2~3: = q -2’j1f28j3uj(2. so the condition 
is also valid for {2. The other 26 cases are treated in a similar way. 0 

Thus, by Lemma 5, the 36 basis elements for the vector space S(&) of the above list 
form a free left module basis for S2 = dS(R,)d. This gives a precise description of the 
A sub-bimodule S2 of f @A r. From the definitions of functionals Xij , X, and the pairing 
between Uq (s/3) and SL, (3) it follows that for both calculi 

o(u!) =mt, o(u$ = w2 - q%& 

w(u~) = -q2w2 and w(u~) = wij for i # j. 

Recall that for any left-covariant differential calculus over A we have dw(a) = --o(a(t)) 
r\w(a(z)), a E A. From the preceding we obtain the following Maurer-Cartan formulas 
for our differential calculi: 

(ft, d) and (r2, d): dwt = -0~12 A 021 - ~13 A 031, 
dW2 = -~13 A 031 - ~23 A ~32, 
dwt3 = -WI A ~13 - ~2 A ~13 - 012 A ~23, 
dW.23 = q2W, A W23 - (1 + q-2)W2 A W23 + qW]3 A 021, 
dW.21 = (q2 + q4)W, A W21 - W2 A W21 - W23 A W31. 

(rl, 4: dwt2 = -(1 + q-2)ot A ~12 + q2m2 A ~12 - ~13 A W32, 
dw31 = q2W A W31 + q202 A W31 + q-+021 A W32, 
dw32 = -WI A 032 + (q2 + q4)W2 A W32 + qWl2 A W31. 

(fi, d): dmt2 = -(I + q-2)Wt A w12 + q202 A wt2 - q2wt3 A w32, 
dust = q2@, A 031 + q2w2 A 031 + qw21 A 032, 
du32 = -WI A W32 + (q2 + q4)W A 032 + q%l2 A W31. 

In this and the next paragraph we omit the subindex r which refers to one of the calculi 
(I-‘], d) and (f2, d). We define a 64 x 64 matrix o = (Oz,)i,j,n,m,zl as follows. Consider 
elements wn @ w,, + wuw, @ wn and wi @ q + yq @ wi + 60,@ o,,, (written in the order 
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of the index set I, i.e. n < m and i cc j) of our vector space basis of S(R). We set 0,:; = 
” b, g;; = p-1 -0;; = y, miy = y-‘, CT;“’ = 6anda;F” = -6kY-‘.Thenumberai!;‘, i E I, 

are set equal to 1 and the remaining matrix entries are set zero. Then the 36 basis elements 
of S(R) are Wi C3 Wj + ~n,m~~mcOn @ W ,,,, i, j E I. i 5 j. From the above formulas we see 
that the commutation relations of the quantum Lie algebra generators can be expressed as 
XiXj - C ,,,,,(T~~~X,,X~ = x&Xi, i # j, with certain coefficients Cfi E C. The linear 
transformation (I of the 64-dimensional vector space ri,v @ ri,v has eigenvalues 1 and - 1 
with multiplicities 36 and 28, respectively. Obvoiusly, a2 is the identity. However, 0 does 
not Satisfy the braid relation ol2CJ23a12 = o23o12023 on ri,v @ rinv @ r?,“,. (For instance, 

we have C’l2’J23C’12(W 8 W23 ‘8 W3) = qW3 @ 023 ‘8 01 -q-‘hW3 ‘8 w21 @ 013 and 
~23~12~23(W ‘8 023 ‘8 013) = qW13 8 w23 ‘8 Wl - hw13 ‘8 W21 @ 013 for the Calculus 
(rl , d).) Let J(R) = &Jn(R) be the two-sided ideal of the tensor algebra c:, of the 
vector space r,!,, which is generated by the set S(R). Clearly, ( rA)inv is (isomorphic to) 
the quotient algebra riFV / J (R) = @, r,F{ / J,, (R). The above basis elements of the vector 
space S(R) form a Grobner basis (see, e.g. [6] for this concept) of the ideal J(R) with respect 
to the above ordering of the index set I. We have checked this by using the computer algebra 
system FELIX [ 11. (One may also verify this assertion by performing explicit calculations.) 
Therefore, we get a vector space basis for the quotient space cz/J(R) by taking all 
monomials in the l-forms wi, i E I, which are not multiples of the leading term of one of 
these Grobner basis elements. From the special form of these elements we see that this set 
of monomials is the same as in the case q = 1. Hence the dimension of the vector space 

ri,“,” / J, (72) is equal to the corresponding dimension 
0 

,” m the classical case. Moreover, 

it follows that the associated higher-order calculi of both calculi (fi , d) and (f3, d) give 
the ordinary higher-order calculus on SL(3) in the limit q + 1. 

5. Left-covariant differential calculi on SL, (N) 

Let Lf = (+lj) and L- = (-1:) be the N x N matrices of linear functionals ‘15 and -1: 
on A := SL, (N) as defined in [5]. Recall that L* is uniquely determined by the properties 

that L* : A + MN(@) is a unital algebra homomorphism and *$(u”,) = ~;f’(i*‘)z~ 

fori,j,n,m=l,..., N, where p is an Nth root of q and i is the R-matrix of the quantum 
group SL, (N). In this section we define (N* - 1)-dimensional left-covariant FODC (rt , d) 
and (r2, d) over A = SL, (N). They generalize the two calculi over SL, (N) studied in the 
preceding section. For this we set 

Xii = h-‘~(-l/)-li and Xii = -h-‘~(+lj)+Ej fori < j andr = 1. 

Xii := -h-‘+l;-lj and Xji = h-‘-lj+lj for i c j and r = 2, 

X n = qh-‘(E - (-ln+ln+t 2 n “+1)) forn=l,..., N-landr=l,2. 

Let A’, denote the linear span of functionals Xij, i # j, i, j = 1, . . . , N, and X,, II = 
l,..., N - 1. Computing the comultiplications of these generators, we obtain: 
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forr = 1 andi < j: 

AXij = E @ Xij + 2 Xi, 8 -lj~(-Z;) 
m=i+l 

and 

j-l 

AXji = E 8 Xji + CXjm @ +c!j~(+Z,); 
m=i 

forr =2andi c j: 

j-l 

AXij = E 8 Xij + CXmj @ ‘I,‘-l’ 
m=i 

and 

AXji = E B Xji + k X,i 8 -~:+~~; 
m=i+l 

forr = 1,2: 

In particular, these formulas show that AX - E 63 X E X,. 8 A' for all X E X, and r = 1,2. 
Therefore, by Lemma I, the vector space X,. defines a left-covariant FODC over SL, (N). 
Furthermore, we verify that Xij(u:) = Sir6js for i # j and X,(U:) = &,(6,, - q2Sn+t,,.) 
forn = I,..., N - 1. Thus all elements of the quantum Lie algebra X, annihilate the 
quantum trace U = c qw2’ ui. Since dim X, = N2 - 1, the FODC (r,, d) has dimension 
N2- 1. 

It is not difficult to check that in the classical limit q + 1 both FODC (r,, d) give the 
ordinary FODC on SL(N). (As in the preceding sections, we define the limit q --f 1 of 
the calculus (r,, d) by keeping the Maurer-Cartan basis @(UC), (r, s) # (N, N), of (fr)inv 
fixed.) Some computations show that for Ji - jl L 3 and r = I,2 the 2-form wij A Oji 
vanishes in (rr),^. That is, if N 2 4, both associated higher-order calculi do not have the 
classical higher-order calculus on SL(N) as their limits when q + 1. To overcome this 
disadvantage, we have taken up another approach in [ 141. 
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